Version 200 (modified by mashry, 6 weeks ago) (diff) 

Alternative LeftRight Symmetric Model
Author
Mustafa Ashry
Department of Mathematics, Faculty of Science, Cairo University, 12613 Giza, Egypt
Center for Fundamental Physics (CFP), Zewail City of Science and Technology, Sheikh Zayed, 12588 Giza, Egypt
Emails
mustafa[AT]sci.cu.edu.eg
mashry[AT]zewailcity.edu.eg
Model Description
The Alternative LeftRight Symmetric Model (ALRM) is gauged by the LeftRight symmetry group SU(3)_{C}×SU(2)_{L}×SU(2)_{R}×U(1)_{BL}. The latter B and L being the baryon and lepton numbers. An extra discrete symmetry S is imposed to distinguish between Higgs fields and their dual fields and hence their interactions; causing the absence of the treelevel flavorchanging neutral currents mediated by Higgs bosons.
As in the SM, lefthanded fermions compose SU(2)_{L} doublets. Righthanded charged leptons form SU(2)_{R} doublets with corresponding extra particles (scotinos) and righthanded upquarks form SU(2)_{R} doublets with corresponding extra downtype exotic quarks. Righthanded neutrinos and downquarks are SU(2)_{L,R} singlets. The Higgs sector composes of an SU(2)_{L}doublet, an SU(2)_{R}doublet and a bidoublet.
The electroweak leftright symmetry SU(2)_{L}×SU(2)_{R}×U(1)_{BL} is spontaneously broken down to the SM electroweak symmetry SU(2)_{L}×U(1)_{Y}, Y being the hypercharge, by the SU(2)_{R}doublet vev, then the SM electroweak symmetry is spontaneously broken down to the U(1)_{em} through the bidoublet and the SU(2)_{L}doublet vevs. Accordingly, all fermions and gauge bosons (except of course photon) become massive via Higgs mechanism. The physical gauge sector of the model contains the electroweak gauge bosons (photon, W and Z bosons) in addition to two extra gauge bosons (W' and Z' ) correspond to the SU(2)_{R} group, analogous to those of the SU(2)_{L} group.
Dirac (massive) neutrinos are considered with the mixing MNS matrix implemented in the normal hierarchy. The case of Majorana neutrinos is considered in many other models' files and can be brought to be implemented here easily. Three mixed generations of quarks are considered and hence the general case of the CKM matrix is implemented. In addition, it was considered that the leftright symmetry is manifest, that is the left and right MNS and CKM mixing matrices are coincident. However, this can be generalized directly.
The model contains ten physical Higgs bosons: four neutral CPeven higgs bosons, one (the lightest) of which is considered to be the SMlike one with mass fixed to have the value mh=125 GeV. Four charged Higgs bosons and two CPodd pseudoscalar Higgs bosons. The mass spectra are calculated and the rotation matrices are implemented analytically.
Minimization conditions and spectrum relations are all used to express the whole model parameters and spectra in terms of only five independent (external) parameters: tanbeta, lambda_{2}, lambda_{3}, alpha_{1}, alpha_{2}. As in any twoHiggs doublet model, e.g., MSSM, tanbeta is the ratio between two vevs. The parameters lambda_{2}, lambda_{3}, alpha_{1}, alpha_{2} are dimensionless potential parameters. The charged Higgs masses are implemented as external parameters.
The effective loopinduced h>gluongluon and h>gammagamma decays at leading order (LO) were implemented. For the complete pp>gammagamma analysis, Madgraph is used as the monte carlo (MC) event generator (EG), Pythia is used for parton showering (PS), matrix element (ME) and PS merging, hadronization and jet matching, then Delphes is used as a detector simulator and finally Madanalysis is used for event file analysis, recasting the LHC results and to produce these histogram figures (to be improved):
References
 M. Ashry and S. Khalil, Phenomenological aspects of a TeVscale alternative leftright model, Physical Review D 91, 015009 (2015)
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.015009  https://inspirehep.net/record/1258411 1310.3315  Mustafa Ashry, TeVscale leftright symmetric model with minimal Higgs sector, Master Thesis, Cairo University, Cairo (2015), Egypt
http://scholar.cu.edu.eg/?q=science_math_mashry/files/mashry_msc_thesis.pdf
Acknowledgements
The author would like to thank W. Abdallah, the late colleague A. Elsayed and A. Moursy for their helpful hints and useful discussions. Thanks to Prof. B. Fuks and Prof. M. E. Peskin for their guiding notes.
Attachments (11)

gghaa_vs_qqaa_ALRM.png
(14.0 KB) 
added by mashry 2 years ago.
gg>h>gammagamma vs qq>gammagamma decays in the ALRM at the detector

gghaa_ALRM_vs_SM.png
(14.3 KB) 
added by mashry 2 years ago.
gg>h>gammagamma decay for the ALRM vs the SM at the detector

ppaa_ALRM_vs_SM.png
(13.0 KB) 
added by mashry 2 years ago.
pp>gammagamma_ALRM_vs_SM at the detector

ALRM_LO_UFO.tar.gz
(499.0 KB) 
added by mashry 4 weeks ago.
UFO Files

ALRM_LO_CH.tar.gz
(90.0 KB) 
added by mashry 4 weeks ago.
CALCHEP Files

ALRM_LO_FA.tar.gz
(49.2 KB) 
added by mashry 4 weeks ago.
FEYNARTS Files

ALRM_LO_SH.tar.gz
(38.2 KB) 
added by mashry 4 weeks ago.
SHERPA Files

ALRM_LO_WO.tar.gz
(84.4 KB) 
added by mashry 4 weeks ago.
WHIZARD Files

ALRM_LO.tar.gz
(10.0 MB) 
added by mashry 4 weeks ago.
This compressed file contains the model file and an example Mathematica® notebook that loads, checks the model, calculates Feynman rules and produces different outputs (UFO, CalcHEP,...). It contains also pdf references files for the model.

gghaa_ALRM.png
(13.5 KB) 
added by mashry 2 days ago.
gghaa_ALRM

ALRM_LO.fr
(65.1 KB) 
added by mashry 35 hours ago.
Model File