# TopFCNC: TopEFTFCNC.fr

File TopEFTFCNC.fr, 24.4 KB (added by degrande, 3 years ago) |
---|

Line | |
---|---|

1 | (***************************************************************************************************************) |

2 | (****** This is the FeynRules mod-file for the Top effective theory ******) |

3 | (****** ******) |

4 | (****** Authors: C. Degrande ******) |

5 | (****** ******) |

6 | (***************************************************************************************************************) |

7 | |

8 | M$ModelName = "TopEFTFCNC"; |

9 | |

10 | |

11 | M$Information = {Authors -> {"C. Degrande"}, |

12 | Version -> "1", |

13 | Date -> "11. 04. 2013", |

14 | Institutions -> {"UIUC"}, |

15 | Emails -> {"cdegrand@illinois.edu"}, |

16 | URLs -> "http://feynrules.phys.ucl.ac.be"}; |

17 | |

18 | FeynmanGauge = True; |

19 | |

20 | |

21 | M$InteractionOrderHierarchy = { |

22 | {QCD,2}, |

23 | {QED,4}, |

24 | {NP,1} |

25 | } |

26 | |

27 | M$InteractionOrderLimit = { |

28 | {NP,2} |

29 | } |

30 | |

31 | |

32 | |

33 | (**************** Parameters *************) |

34 | |

35 | M$Parameters = { |

36 | |

37 | (* External parameters *) |

38 | |

39 | Lambda== { |

40 | ParameterType -> External, |

41 | ParameterName -> Lambda, |

42 | BlockName -> DIM6, |

43 | InteractionOrder -> {NP,-1}, |

44 | Value -> 1000, |

45 | TeX -> \[CapitalLambda], |

46 | Description -> "Scale of the new physics"}, |

47 | |

48 | RCtphi== { |

49 | ParameterType -> External, |

50 | ParameterName -> RCtphi, |

51 | BlockName -> DIM6, |

52 | InteractionOrder -> {QED,3}, |

53 | Value -> 1, |

54 | TeX -> Subscript[RC,t\[Phi]], |

55 | Description -> "Real part of the coefficient of Otphi"}, |

56 | |

57 | ICtphi== { |

58 | ParameterType -> External, |

59 | ParameterName -> ICtphi, |

60 | BlockName -> DIM6, |

61 | InteractionOrder -> {QED,3}, |

62 | Value -> 1, |

63 | TeX -> Subscript[IC,t\[Phi]], |

64 | Description -> "Imaginary part of the coefficient of Otphi"}, |

65 | |

66 | RCtG== { |

67 | ParameterType -> External, |

68 | ParameterName -> RCtG, |

69 | BlockName -> DIM6, |

70 | InteractionOrder -> {QED,1}, |

71 | Value -> 1, |

72 | TeX -> Subscript[RC,tG], |

73 | Description -> "Real part of the coefficient of OtG"}, |

74 | |

75 | ICtG== { |

76 | ParameterType -> External, |

77 | ParameterName -> ICtG, |

78 | BlockName -> DIM6, |

79 | InteractionOrder -> {QED,1}, |

80 | Value -> 1, |

81 | TeX -> Subscript[IC,tG], |

82 | Description -> "Imaginary part of the coefficient of OtG"}, |

83 | |

84 | RCtW== { |

85 | ParameterType -> External, |

86 | ParameterName -> RCtW, |

87 | BlockName -> DIM6, |

88 | InteractionOrder -> {QED,1}, |

89 | Value -> 1, |

90 | TeX -> Subscript[RC,tW], |

91 | Description -> "Real part of the coefficient of OtW"}, |

92 | |

93 | ICtW== { |

94 | ParameterType -> External, |

95 | ParameterName -> ICtW, |

96 | BlockName -> DIM6, |

97 | InteractionOrder -> {QED,1}, |

98 | Value -> 1, |

99 | TeX -> Subscript[IC,tW], |

100 | Description -> "Imaginary part of the coefficient of OtW"}, |

101 | |

102 | RCtB== { |

103 | ParameterType -> External, |

104 | ParameterName -> RCtB, |

105 | BlockName -> DIM6, |

106 | InteractionOrder -> {QED,1}, |

107 | Value -> 1, |

108 | TeX -> Subscript[RC,tB], |

109 | Description -> "Real part of the coefficient of OtB"}, |

110 | |

111 | ICtB== { |

112 | ParameterType -> External, |

113 | ParameterName -> ICtB, |

114 | BlockName -> DIM6, |

115 | InteractionOrder -> {QED,1}, |

116 | Value -> 1, |

117 | TeX -> Subscript[IC,tB], |

118 | Description -> "Imaginary part of the coefficient of OtB"}, |

119 | |

120 | (* with the up*) |

121 | |

122 | RCuphi== { |

123 | ParameterType -> External, |

124 | ParameterName -> RCuphi, |

125 | BlockName -> DIM6, |

126 | InteractionOrder -> {QED,3}, |

127 | Value -> 1, |

128 | TeX -> Subscript[RC,u\[Phi]], |

129 | Description -> "Real part of the coefficient of Ouphi"}, |

130 | |

131 | ICuphi== { |

132 | ParameterType -> External, |

133 | ParameterName -> ICuphi, |

134 | BlockName -> DIM6, |

135 | InteractionOrder -> {QED,3}, |

136 | Value -> 1, |

137 | TeX -> Subscript[IC,u\[Phi]], |

138 | Description -> "Imaginary part of the coefficient of Ouphi"}, |

139 | |

140 | RCuG== { |

141 | ParameterType -> External, |

142 | ParameterName -> RCuG, |

143 | BlockName -> DIM6, |

144 | InteractionOrder -> {QED,1}, |

145 | Value -> 1, |

146 | TeX -> Subscript[RC,uG], |

147 | Description -> "Real part of the coefficient of OuG"}, |

148 | |

149 | ICuG== { |

150 | ParameterType -> External, |

151 | ParameterName -> ICuG, |

152 | BlockName -> DIM6, |

153 | InteractionOrder -> {QED,1}, |

154 | Value -> 1, |

155 | TeX -> Subscript[IC,uG], |

156 | Description -> "Imaginary part of the coefficienu of OuG"}, |

157 | |

158 | RCuW== { |

159 | ParameterType -> External, |

160 | ParameterName -> RCuW, |

161 | BlockName -> DIM6, |

162 | InteractionOrder -> {QED,1}, |

163 | Value -> 1, |

164 | TeX -> Subscript[RC,uW], |

165 | Description -> "Real part of the coefficient of OuW"}, |

166 | |

167 | ICuW== { |

168 | ParameterType -> External, |

169 | ParameterName -> ICuW, |

170 | BlockName -> DIM6, |

171 | InteractionOrder -> {QED,1}, |

172 | Value -> 1, |

173 | TeX -> Subscript[IC,uW], |

174 | Description -> "Imaginary part of the coefficient of OuW"}, |

175 | |

176 | RCuB== { |

177 | ParameterType -> External, |

178 | ParameterName -> RCuB, |

179 | BlockName -> DIM6, |

180 | InteractionOrder -> {QED,1}, |

181 | Value -> 1, |

182 | TeX -> Subscript[RC,uB], |

183 | Description -> "Real part of the coefficient of OuB"}, |

184 | |

185 | ICuB== { |

186 | ParameterType -> External, |

187 | ParameterName -> ICuB, |

188 | BlockName -> DIM6, |

189 | InteractionOrder -> {QED,1}, |

190 | Value -> 1, |

191 | TeX -> Subscript[IC,uB], |

192 | Description -> "Imaginary part of the coefficient of OuB"}, |

193 | |

194 | (* currents 1-3 *) |

195 | |

196 | RC1utR== { |

197 | ParameterType -> External, |

198 | ParameterName -> RC1utR, |

199 | BlockName -> DIM6, |

200 | InteractionOrder -> {QED,1}, |

201 | Value -> 1, |

202 | TeX -> Subsuperscript[RC,utR,1], |

203 | Description -> "Real part of the coefficient of O1utR"}, |

204 | |

205 | IC1utR== { |

206 | ParameterType -> External, |

207 | ParameterName -> IC1utR, |

208 | BlockName -> DIM6, |

209 | InteractionOrder -> {QED,1}, |

210 | Value -> 1, |

211 | TeX -> Subsuperscript[IC,utR,1], |

212 | Description -> "Imaginary part of the coefficient of O1utR"}, |

213 | |

214 | RC1utL== { |

215 | ParameterType -> External, |

216 | ParameterName -> RC1utL, |

217 | BlockName -> DIM6, |

218 | InteractionOrder -> {QED,1}, |

219 | Value -> 1, |

220 | TeX -> Subsuperscript[RC,utL,1], |

221 | Description -> "Real part of the coefficient of O1utL"}, |

222 | |

223 | IC1utL== { |

224 | ParameterType -> External, |

225 | ParameterName -> IC1utL, |

226 | BlockName -> DIM6, |

227 | InteractionOrder -> {QED,1}, |

228 | Value -> 1, |

229 | TeX -> Subsuperscript[IC,utL,1], |

230 | Description -> "Imaginary part of the coefficient of O1utL"}, |

231 | |

232 | RC3utL== { |

233 | ParameterType -> External, |

234 | ParameterName -> RC3utL, |

235 | BlockName -> DIM6, |

236 | InteractionOrder -> {QED,1}, |

237 | Value -> 1, |

238 | TeX -> Subsuperscript[RC,utL,3], |

239 | Description -> "Real part of the coefficient of O3utL"}, |

240 | |

241 | IC3utL== { |

242 | ParameterType -> External, |

243 | ParameterName -> IC3utL, |

244 | BlockName -> DIM6, |

245 | InteractionOrder -> {QED,1}, |

246 | Value -> 1, |

247 | TeX -> Subsuperscript[IC,utL,3], |

248 | Description -> "Imaginary part of the coefficient of O3utL"}, |

249 | |

250 | (* with the charm*) |

251 | |

252 | RCtcphi== { |

253 | ParameterType -> External, |

254 | ParameterName -> RCtcphi, |

255 | BlockName -> DIM6, |

256 | InteractionOrder -> {QED,3}, |

257 | Value -> 1, |

258 | TeX -> Subscript[RC,tc\[Phi]], |

259 | Description -> "Real part of the coefficient of Otcphi"}, |

260 | |

261 | ICtcphi== { |

262 | ParameterType -> External, |

263 | ParameterName -> ICtcphi, |

264 | BlockName -> DIM6, |

265 | InteractionOrder -> {QED,3}, |

266 | Value -> 1, |

267 | TeX -> Subscript[IC,tc\[Phi]], |

268 | Description -> "Imaginary part of the coefficient of Otcphi"}, |

269 | |

270 | RCtcG== { |

271 | ParameterType -> External, |

272 | ParameterName -> RCtcG, |

273 | BlockName -> DIM6, |

274 | InteractionOrder -> {QED,1}, |

275 | Value -> 1, |

276 | TeX -> Subscript[RC,tcG], |

277 | Description -> "Real part of the coefficient of OtcG"}, |

278 | |

279 | ICtcG== { |

280 | ParameterType -> External, |

281 | ParameterName -> ICtcG, |

282 | BlockName -> DIM6, |

283 | InteractionOrder -> {QED,1}, |

284 | Value -> 1, |

285 | TeX -> Subscript[IC,tcG], |

286 | Description -> "Imaginary part of the coefficient of OtcG"}, |

287 | |

288 | RCtcW== { |

289 | ParameterType -> External, |

290 | ParameterName -> RCtcW, |

291 | BlockName -> DIM6, |

292 | InteractionOrder -> {QED,1}, |

293 | Value -> 1, |

294 | TeX -> Subscript[RC,tcW], |

295 | Description -> "Real part of the coefficient of OtcW"}, |

296 | |

297 | ICtcW== { |

298 | ParameterType -> External, |

299 | ParameterName -> ICtcW, |

300 | BlockName -> DIM6, |

301 | InteractionOrder -> {QED,1}, |

302 | Value -> 1, |

303 | TeX -> Subscript[IC,tcW], |

304 | Description -> "Imaginary part of the coefficient of OtcW"}, |

305 | |

306 | RCtcB== { |

307 | ParameterType -> External, |

308 | ParameterName -> RCtcB, |

309 | BlockName -> DIM6, |

310 | InteractionOrder -> {QED,1}, |

311 | Value -> 1, |

312 | TeX -> Subscript[RC,tcB], |

313 | Description -> "Real part of the coefficient of OtcB"}, |

314 | |

315 | ICtcB== { |

316 | ParameterType -> External, |

317 | ParameterName -> ICtcB, |

318 | BlockName -> DIM6, |

319 | InteractionOrder -> {QED,1}, |

320 | Value -> 1, |

321 | TeX -> Subscript[IC,tcB], |

322 | Description -> "Imaginary part of the coefficient of OtcB"}, |

323 | |

324 | (* with the top-charm*) |

325 | |

326 | RCctphi== { |

327 | ParameterType -> External, |

328 | ParameterName -> RCctphi, |

329 | BlockName -> DIM6, |

330 | InteractionOrder -> {QED,3}, |

331 | Value -> 1, |

332 | TeX -> Subscript[RC,ct\[Phi]], |

333 | Description -> "Real part of the coefficient of Octphi"}, |

334 | |

335 | ICctphi== { |

336 | ParameterType -> External, |

337 | ParameterName -> ICctphi, |

338 | BlockName -> DIM6, |

339 | InteractionOrder -> {QED,3}, |

340 | Value -> 1, |

341 | TeX -> Subscript[IC,ct\[Phi]], |

342 | Description -> "Imaginary part of the coefficient of Octphi"}, |

343 | |

344 | RCctG== { |

345 | ParameterType -> External, |

346 | ParameterName -> RCctG, |

347 | BlockName -> DIM6, |

348 | InteractionOrder -> {QED,1}, |

349 | Value -> 1, |

350 | TeX -> Subscript[RC,ctG], |

351 | Description -> "Real part of the coefficient of OctG"}, |

352 | |

353 | ICctG== { |

354 | ParameterType -> External, |

355 | ParameterName -> ICctG, |

356 | BlockName -> DIM6, |

357 | InteractionOrder -> {QED,1}, |

358 | Value -> 1, |

359 | TeX -> Subscript[IC,ctG], |

360 | Description -> "Imaginary part of the coefficient of OctG"}, |

361 | |

362 | RCctW== { |

363 | ParameterType -> External, |

364 | ParameterName -> RCctW, |

365 | BlockName -> DIM6, |

366 | InteractionOrder -> {QED,1}, |

367 | Value -> 1, |

368 | TeX -> Subscript[RC,ctW], |

369 | Description -> "Real part of the coefficient of OctW"}, |

370 | |

371 | ICctW== { |

372 | ParameterType -> External, |

373 | ParameterName -> ICctW, |

374 | BlockName -> DIM6, |

375 | InteractionOrder -> {QED,1}, |

376 | Value -> 1, |

377 | TeX -> Subscript[IC,ctW], |

378 | Description -> "Imaginary part of the coefficient of OctW"}, |

379 | |

380 | RCctB== { |

381 | ParameterType -> External, |

382 | ParameterName -> RCctB, |

383 | BlockName -> DIM6, |

384 | InteractionOrder -> {QED,1}, |

385 | Value -> 1, |

386 | TeX -> Subscript[RC,ctB], |

387 | Description -> "Real part of the coefficient of OctB"}, |

388 | |

389 | ICctB== { |

390 | ParameterType -> External, |

391 | ParameterName -> ICctB, |

392 | BlockName -> DIM6, |

393 | InteractionOrder -> {QED,1}, |

394 | Value -> 1, |

395 | TeX -> Subscript[IC,ctB], |

396 | Description -> "Imaginary part of the coefficient of OtcB"}, |

397 | |

398 | (* currents 2-3 *) |

399 | |

400 | RC1ctR== { |

401 | ParameterType -> External, |

402 | ParameterName -> RC1ctR, |

403 | BlockName -> DIM6, |

404 | InteractionOrder -> {QED,1}, |

405 | Value -> 1, |

406 | TeX -> Subsuperscript[RC,ctR,1], |

407 | Description -> "Real part of the coefficient of O1ctR"}, |

408 | |

409 | IC1ctR== { |

410 | ParameterType -> External, |

411 | ParameterName -> IC1ctR, |

412 | BlockName -> DIM6, |

413 | InteractionOrder -> {QED,1}, |

414 | Value -> 1, |

415 | TeX -> Subsuperscript[IC,ctR,1], |

416 | Description -> "Imaginary part of the coefficient of O1ctR"}, |

417 | |

418 | RC1ctL== { |

419 | ParameterType -> External, |

420 | ParameterName -> RC1ctL, |

421 | BlockName -> DIM6, |

422 | InteractionOrder -> {QED,1}, |

423 | Value -> 1, |

424 | TeX -> Subsuperscript[RC,ctL,1], |

425 | Description -> "Real part of the coefficient of O1ctL"}, |

426 | |

427 | IC1ctL== { |

428 | ParameterType -> External, |

429 | ParameterName -> IC1ctL, |

430 | BlockName -> DIM6, |

431 | InteractionOrder -> {QED,1}, |

432 | Value -> 1, |

433 | TeX -> Subsuperscript[IC,ctL,1], |

434 | Description -> "Imaginary part of the coefficient of O1ctL"}, |

435 | |

436 | RC3ctL== { |

437 | ParameterType -> External, |

438 | ParameterName -> RC3ctL, |

439 | BlockName -> DIM6, |

440 | InteractionOrder -> {QED,1}, |

441 | Value -> 1, |

442 | TeX -> Subsuperscript[RC,ctL,3], |

443 | Description -> "Real part of the coefficient of O3ctL"}, |

444 | |

445 | IC3ctL== { |

446 | ParameterType -> External, |

447 | ParameterName -> IC3ctL, |

448 | BlockName -> DIM6, |

449 | InteractionOrder -> {QED,1}, |

450 | Value -> 1, |

451 | TeX -> Subsuperscript[IC,ctL,3], |

452 | Description -> "Imaginary part of the coefficient of O3utL"}, |

453 | |

454 | (* Internal parameters *) |

455 | |

456 | Ctphi== { |

457 | ParameterType -> Internal, |

458 | ComplexParameter->True, |

459 | InteractionOrder -> {QED,3}, |

460 | ParameterName -> Ctphi, |

461 | Value -> RCtphi + I ICtphi, |

462 | TeX -> Subscript[C,t\[Phi]], |

463 | Description -> "coefficient of Otphi"}, |

464 | |

465 | CtG== { |

466 | ParameterType -> Internal, |

467 | ComplexParameter->True, |

468 | InteractionOrder -> {QED,1}, |

469 | ParameterName -> CtG, |

470 | Value -> RCtG + I ICtG, |

471 | TeX -> Subscript[C,tG], |

472 | Description -> "coefficient of OtG"}, |

473 | |

474 | CtW== { |

475 | ParameterType -> Internal, |

476 | ComplexParameter->True, |

477 | InteractionOrder -> {QED,1}, |

478 | ParameterName -> CtW, |

479 | Value -> RCtW + I ICtW, |

480 | TeX -> Subscript[C,tW], |

481 | Description -> "coefficient of OtW"}, |

482 | |

483 | CtB== { |

484 | ParameterType -> Internal, |

485 | ComplexParameter->True, |

486 | InteractionOrder -> {QED,1}, |

487 | ParameterName -> CtB, |

488 | Value -> RCtB + I ICtB, |

489 | TeX -> Subscript[C,tB], |

490 | Description -> "coefficient of OtB"}, |

491 | |

492 | Cuphi== { |

493 | ParameterType -> Internal, |

494 | ComplexParameter->True, |

495 | InteractionOrder -> {QED,3}, |

496 | ParameterName -> Cuphi, |

497 | Value -> RCuphi + I ICuphi, |

498 | TeX -> Subscript[C,u\[Phi]], |

499 | Description -> "coefficient of Ouphi"}, |

500 | |

501 | CuG== { |

502 | ParameterType -> Internal, |

503 | ComplexParameter->True, |

504 | InteractionOrder -> {QED,1}, |

505 | ParameterName -> CuG, |

506 | Value -> RCuG + I ICuG, |

507 | TeX -> Subscript[C,uG], |

508 | Description -> "coefficient of OuG"}, |

509 | |

510 | CuW== { |

511 | ParameterType -> Internal, |

512 | ComplexParameter->True, |

513 | InteractionOrder -> {QED,1}, |

514 | ParameterName -> CuW, |

515 | Value -> RCuW + I ICuW, |

516 | TeX -> Subscript[C,uW], |

517 | Description -> "coefficient of OuW"}, |

518 | |

519 | CuB== { |

520 | ParameterType -> Internal, |

521 | ComplexParameter->True, |

522 | InteractionOrder -> {QED,1}, |

523 | ParameterName -> CuB, |

524 | Value -> RCuB + I ICuB, |

525 | TeX -> Subscript[C,uB], |

526 | Description -> "coefficient of OuB"}, |

527 | |

528 | C1utR== { |

529 | ParameterType -> Internal, |

530 | ComplexParameter->True, |

531 | InteractionOrder -> {QED,1}, |

532 | ParameterName -> C1utR, |

533 | Value -> RC1utR + I IC1utR, |

534 | TeX -> Subsuperscript[C,utR,1], |

535 | Description -> "coefficient of O1utR"}, |

536 | |

537 | C1utL== { |

538 | ParameterType -> Internal, |

539 | ComplexParameter->True, |

540 | InteractionOrder -> {QED,1}, |

541 | ParameterName -> C1utL, |

542 | Value -> RC1utL + I IC1utL, |

543 | TeX -> Subsuperscript[C,utL,1], |

544 | Description -> "coefficient of O1utL"}, |

545 | |

546 | C3utL== { |

547 | ParameterType -> Internal, |

548 | ComplexParameter->True, |

549 | InteractionOrder -> {QED,1}, |

550 | ParameterName -> C3utL, |

551 | Value -> RC3utL + I IC3utL, |

552 | TeX -> Subsuperscript[C,utL,3], |

553 | Description -> "coefficient of O3utL"}, |

554 | |

555 | (* with the charm *) |

556 | |

557 | Ctcphi== { |

558 | ParameterType -> Internal, |

559 | ComplexParameter->True, |

560 | InteractionOrder -> {QED,3}, |

561 | ParameterName -> Ctcphi, |

562 | Value -> RCtcphi + I ICtcphi, |

563 | TeX -> Subscript[C,tc\[Phi]], |

564 | Description -> "coefficient of Otcphi"}, |

565 | |

566 | CtcG== { |

567 | ParameterType -> Internal, |

568 | ComplexParameter->True, |

569 | InteractionOrder -> {QED,1}, |

570 | ParameterName -> CtcG, |

571 | Value -> RCtcG + I ICtcG, |

572 | TeX -> Subscript[C,tcG], |

573 | Description -> "coefficient of OtcG"}, |

574 | |

575 | CtcW== { |

576 | ParameterType -> Internal, |

577 | ComplexParameter->True, |

578 | InteractionOrder -> {QED,1}, |

579 | ParameterName -> CtcW, |

580 | Value -> RCtcW + I ICtcW, |

581 | TeX -> Subscript[C,tcW], |

582 | Description -> "coefficient of OtcW"}, |

583 | |

584 | CtcB== { |

585 | ParameterType -> Internal, |

586 | ComplexParameter->True, |

587 | InteractionOrder -> {QED,1}, |

588 | ParameterName -> CtcB, |

589 | Value -> RCtcB + I ICtcB, |

590 | TeX -> Subscript[C,tcB], |

591 | Description -> "coefficient of OtcB"}, |

592 | |

593 | Cctphi== { |

594 | ParameterType -> Internal, |

595 | ComplexParameter->True, |

596 | InteractionOrder -> {QED,3}, |

597 | ParameterName -> Cctphi, |

598 | Value -> RCctphi + I ICctphi, |

599 | TeX -> Subscript[C,ct\[Phi]], |

600 | Description -> "coefficient of Octphi"}, |

601 | |

602 | CctG== { |

603 | ParameterType -> Internal, |

604 | ComplexParameter->True, |

605 | InteractionOrder -> {QED,1}, |

606 | ParameterName -> CctG, |

607 | Value -> RCctG + I ICctG, |

608 | TeX -> Subscript[C,ctG], |

609 | Description -> "coefficient of OctG"}, |

610 | |

611 | CctW== { |

612 | ParameterType -> Internal, |

613 | ComplexParameter->True, |

614 | InteractionOrder -> {QED,1}, |

615 | ParameterName -> CctW, |

616 | Value -> RCctW + I ICctW, |

617 | TeX -> Subscript[C,ctW], |

618 | Description -> "coefficient of OctW"}, |

619 | |

620 | CctB== { |

621 | ParameterType -> Internal, |

622 | ComplexParameter->True, |

623 | InteractionOrder -> {QED,1}, |

624 | ParameterName -> CctB, |

625 | Value -> RCctB + I ICctB, |

626 | TeX -> Subscript[C,ctB], |

627 | Description -> "coefficient of OctB"}, |

628 | |

629 | C1ctR== { |

630 | ParameterType -> Internal, |

631 | ComplexParameter->True, |

632 | InteractionOrder -> {QED,1}, |

633 | ParameterName -> C1ctR, |

634 | Value -> RC1ctR + I IC1ctR, |

635 | TeX -> Subsuperscript[C,ctR,1], |

636 | Description -> "coefficient of O1ctR"}, |

637 | |

638 | C1ctL== { |

639 | ParameterType -> Internal, |

640 | ComplexParameter->True, |

641 | InteractionOrder -> {QED,1}, |

642 | ParameterName -> C1ctL, |

643 | Value -> RC1ctL + I IC1ctL, |

644 | TeX -> Subsuperscript[C,ctL,1], |

645 | Description -> "coefficient of O1ctL"}, |

646 | |

647 | C3ctL== { |

648 | ParameterType -> Internal, |

649 | ComplexParameter->True, |

650 | InteractionOrder -> {QED,1}, |

651 | ParameterName -> C3ctL, |

652 | Value -> RC3ctL + I IC3ctL, |

653 | TeX -> Subsuperscript[C,ctL,3], |

654 | Description -> "coefficient of O3ctL"} |

655 | |

656 | } |

657 | |

658 | (*1-3*) |

659 | |

660 | LtphinH := Ctphi/Lambda^2 ExpandIndices[ |

661 | Module[{sp, ii, cc, jj, kk}, |

662 | QLbar[sp, ii, 1, cc].uR[sp, 3, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}]; |

663 | Ltphi := LtphinH+HC[LtphinH]; |

664 | |

665 | LtGnH := I*CtG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 1, i].uR [r, 3, j] Phibar[jj] Eps[ii, jj] T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]]; |

666 | LtG := LtGnH+HC[LtGnH]; |

667 | |

668 | LtWnH := I*CtW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 1, i].uR[r, 3, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]]; |

669 | LtW := LtWnH+HC[LtWnH]; |

670 | |

671 | LtBnH := I*CtB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 1, i].uR [r, 3, i] Phibar[jj] Eps[ii, jj] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]]; |

672 | LtB := LtBnH+HC[LtBnH]; |

673 | |

674 | (*3-1*) |

675 | |

676 | LuphinH := Cuphi/Lambda^2 ExpandIndices[ |

677 | Module[{sp, ii, cc, jj, kk}, |

678 | QLbar[sp, ii, 3, cc].uR[sp, 1, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}]; |

679 | Luphi := LuphinH+HC[LuphinH]; |

680 | |

681 | LuGnH := I*CuG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 1, j] Phibar[jj] Eps[ii, jj] T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]]; |

682 | LuG := LuGnH+HC[LuGnH]; |

683 | |

684 | LuWnH := I*CuW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 3, i].uR[r, 1, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]]; |

685 | LuW := LuWnH+HC[LuWnH]; |

686 | |

687 | LuBnH := I*CuB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 1, i] Phibar[jj] Eps[ii, jj] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]]; |

688 | LuB := LuBnH+HC[LuBnH]; |

689 | |

690 | (*Currents*) |

691 | |

692 | L1utRnH := I* C1utR/Lambda^2 Module[{jj,mu,r,j,s},ExpandIndices[(Phibar[jj]DC[Phi[jj],mu]-DC[Phibar[jj],mu]Phi[jj])(uRbar[r,1,j].uR[s,3,j]Ga[mu,r,s]), FlavorExpand -> {SU2D, SU2W}]]; |

693 | L1utR:=L1utRnH + HC[L1utRnH]; |

694 | |

695 | L1utLnH := I* C1utL/Lambda^2 Module[{jj,mu,r,ii,j,s},ExpandIndices[(Phibar[jj] DC[Phi[jj], mu] - DC[Phibar[jj], mu] Phi[jj]) (QLbar[r, ii, 1, j].QL[s, ii, 3, j] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]]; |

696 | L1utL:=L1utLnH+HC[L1utLnH]; |

697 | |

698 | L3utLnH := I* C3utL/Lambda^2 Module[{jj,mu,r,ii,j,s,i,kk,c},ExpandIndices[2 (Phibar[jj] Ta[kk, jj, ii] DC[Phi[ii], mu] - DC[Phibar[jj], mu] Ta[kk, jj, ii] Phi[ii]) (QLbar[r, j, 1, c].QL[s, i, 3, c] 2 Ta[kk, j, i] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]]; |

699 | L3utL:=L3utLnH+HC[L3utLnH]; |

700 | |

701 | (* with the charm *) |

702 | |

703 | LtcphinH := Ctcphi/Lambda^2 ExpandIndices[ |

704 | Module[{sp, ii, cc, jj, kk}, |

705 | QLbar[sp, ii, 2, cc].uR[sp, 3, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}]; |

706 | Ltcphi := LtcphinH+HC[LtcphinH]; |

707 | |

708 | |

709 | LtcGnH := I*CtcG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 2, i].uR [r, 3, j] Phibar[jj] Eps[ii, jj] T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]]; |

710 | LtcG := LtcGnH+HC[LtcGnH]; |

711 | |

712 | LtcWnH := I*CtcW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 2, i].uR[r, 3, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]]; |

713 | LtcW := LtcWnH+HC[LtcWnH]; |

714 | |

715 | LtcBnH := I*CtcB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 2, i].uR [r, 3, i] Phibar[jj] Eps[ii, jj] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]]; |

716 | LtcB := LtcBnH+HC[LtcBnH]; |

717 | |

718 | (* with the top - charm *) |

719 | |

720 | LctphinH := Cctphi/Lambda^2 ExpandIndices[ |

721 | Module[{sp, ii, cc, jj, kk}, |

722 | QLbar[sp, ii, 3, cc].uR[sp, 2, cc] Phibar[jj] Eps[ii,jj] (Phibar[kk] Phi[kk] - vev^2/2)], FlavorExpand -> {SU2D}]; |

723 | Lctphi := LctphinH+HC[LctphinH]; |

724 | |

725 | |

726 | LctGnH := I*CctG*gs/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 2, j] Phibar[jj] Eps[ii, jj] T[a,i,j] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[G,mu,nu,a],FlavorExpand->{SU2D,SU2W}]]; |

727 | LctG := LctGnH+HC[LctGnH]; |

728 | |

729 | LctWnH := I*CctW*gw/Lambda^2 Module[{a, s, r, i, t, u, mu, nu, ii, jj, kk}, ExpandIndices[QLbar[s, kk, 3, i].uR[r, 2, i] Phibar[jj] Eps[ii, jj] 2 Ta[a, kk,ii] (Ga[mu, s, t] Ga[nu, t, u]) ProjP[u, r] FS[Wi, mu, nu, a], FlavorExpand -> {SU2D, SU2W}]]; |

730 | LctW := LctWnH+HC[LctWnH]; |

731 | |

732 | LctBnH := I*CctB*g1/Lambda^2 Module[{a,s,r,i,j,t,u,mu,nu,ii,jj},ExpandIndices[QLbar[s, ii, 3, i].uR [r, 2, i] Phibar[jj] Eps[ii, jj] (Ga[mu,s,t] Ga[nu,t,u]) ProjP[u,r] FS[B,mu,nu],FlavorExpand->{SU2D,SU2W}]]; |

733 | LctB := LctBnH+HC[LctBnH]; |

734 | |

735 | |

736 | (*Currents 2-3*) |

737 | |

738 | L1ctRnH := I* C1ctR/Lambda^2 Module[{jj,mu,r,j,s},ExpandIndices[(Phibar[jj]DC[Phi[jj],mu]-DC[Phibar[jj],mu]Phi[jj])(uRbar[r,2,j].uR[s,3,j]Ga[mu,r,s]), FlavorExpand -> {SU2D, SU2W}]]; |

739 | L1ctR:=L1ctRnH + HC[L1ctRnH]; |

740 | |

741 | L1ctLnH := I* C1ctL/Lambda^2 Module[{jj,mu,r,ii,j,s},ExpandIndices[(Phibar[jj] DC[Phi[jj], mu] - DC[Phibar[jj], mu] Phi[jj]) (QLbar[r, ii, 2, j].QL[s, ii, 3, j] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]]; |

742 | L1ctL:=L1ctLnH+HC[L1ctLnH]; |

743 | |

744 | L3ctLnH := I* C3ctL/Lambda^2 Module[{jj,mu,r,ii,j,s,i,kk,c},ExpandIndices[2 (Phibar[jj] Ta[kk, jj, ii] DC[Phi[ii], mu] - DC[Phibar[jj], mu] Ta[kk, jj, ii] Phi[ii]) (QLbar[r, j, 2, c].QL[s, i, 3, c] 2 Ta[kk, j, i] Ga[mu, r, s]), FlavorExpand -> {SU2D, SU2W}]]; |

745 | L3ctL:=L3ctLnH+HC[L3ctLnH]; |